
- 0 -

3. THE SIMMEK SYSTEM

3.1 A summary introduction

SIMMEK is a tool for performing analysis of manufacturing systems. It was originally designed
and implemented bearing in mind that it was to be used as a typical decision support tool in
strategic matters concerning layout and machine capacities as well as automation in
manufacturing systems. It was also intended to mainly be used in job shop type of
manufacturing systems. Further development and certain facilities make it suitable for FMS as
well as production line manufacturing. It handles modelling of "one of a kind" production as
well as large series or batch production. The major change in the manufacturing management
approach of SIMMEK has been that it is now more a decision support tool in production
management than in factory planning.

SIMMEK is based on discrete event simulation, and the modelling environment is object
oriented. The object oriented models are transformed by an object linker into data structures
executable by a discrete event oriented simulation kernel.

The user friendly graphical modelling environment makes it possible for end users to build
models in a quick and reliable way, using terms from manufacturing. Various tests and check of
model logic are helpful functions when testing validity of the models. Integration with software
packages with business graphics and statistical functions, is convenient in the result presentation
phase.

The SIMMEK system also contains functions for performing investment and costs analysis. This
means that it is possible to perform economical evaluation of different models.

SIMMEK consists of a number of modules described more in detail in later sections. Except
from the main part of the result presentation module they are all developed at SINTEF
Production Engineering as a part of the SIMMEK Research Programme. The reason why so
much was developed from scratch, is also explained in later sections.

To summarise, there are some major points that make SIMMEK different from, and in certain
areas superior to, other simulation systems for manufacturing.

 * A tool suitable for both decision support in strategic,
 tactical and operational production management

 * Includes economical analysis

 * Models and results are presented by spreadsheets and graphics, making

it
 quick to model
 easy to read and interpret
 easy to post process the data
 easy to integrate

 * No programming or pseudo programming needed

Table 3.1 The SIMMEK system’s major advantages

- 1 -

Regarding the last point, an ongoing R & D project at SINTEF has already shown that SIMMEK
can be integrated with success with an MRP II based production management system.

SIMMEK has also been modified and improved to receive input from a set of Excel
spreadsheets, and not only through the modelling units described later in this module. This
specification and programming work have been performed by Eirik Borgen and myself, as well
people from other companies, and are therefore not reported here.

3.2 Basic simulation approaches

3.2.1 The Simulation "world view" approach of SIMMEK

The Simulation Kernel in SIMMEK is based on process oriented discrete event simulation with
continuous time measurements. It is discrete event oriented in the way that it has the traditional
approach of using an event list to control what is happening during the simulation. The different
steps of operations are executed by stepping to the next event scheduled, letting it happen, and
updating the system parameters. This is described in more detail in Section 3.5. The modelling
environment is object oriented as well as process oriented. This means that the life of an entity
object is a process. An entity object is of course a type of product or part.

Discrete event
simulation

Time

Continuous

Combined simulation

Continuous simulation

Discrete

Discrete

Event

Continuous

Figure 3.1 Time measurement in simulation

A discrete event approach has been chosen because of the nature of the manufacturing process.
A discrete manufacturing system handles single parts or batches, batches which again consist of
a discrete number of parts. The different states that such a system may be in are also discrete; a
machine is idle or not, the number of jobs in a queue is 1,2,3,..n, the number of finished parts is
1,2,3,..n, etc.. What is not discrete in this type of manufacturing systems, is the time
measurement. At a certain instant of time a job may be 71,3 % finished, there may be 3,45
minutes left of it. This is handled by the continuous time measurement of the simulation system.

- 2 -

For the sake of completeness it must be mentioned that time measurement in a discrete event
simulation system is continuous only down to the maximum number of digits behind comma
that the system allows. This limit has no practical influence; with three digits behind comma,
and time units in seconds, the accuracy demands are taken well care of.

A manufacturing system may also be described as being made up of a number of objects of
different types; machines, humans, products, components, etc. This is the reason why an object
oriented modelling environment is chosen for SIMMEK.

Thirdly, the process orientation comes from the description of the manufacturing operations that
creates the products. This information is found - and the operations are performed - as a linked
list of operations. The operations must be performed on the same part/batch, and in the right
sequence. This sequencing is reflected in the process oriented modelling environment of
SIMMEK.

3.2.2 The SIMULA and Demos impact on SIMMEK

It must be pointed out that the Demos class of SIMULA was our first experience with discrete
event simulation. Demos, Discrete Event Modelling on SIMULA, is a class in the object
oriented, general purpose, programming language SIMULA, designed for doing simulation
experiments [3]. SIMULA is now available on a large range of computers.

The brilliancy in SIMULA which is extensively used by the class DEMOS, is the class concept
itself. This concept with its inheriting facilities allows the possibility of defining a class resource
with a certain set of parameters and abilities. As subclasses of this resource may be
distinguished between the consumable and non-consumable resources with additional, different
abilities. These subclasses may again be divided into subclasses, for instance humans, machines,
work stations and so on.

This is exactly what is done in class DEMOS, and this class may be used by a reference to this
external definition, and every class may have extended and different subdivisions in every
application. This class hierarchy is extremely useful in modelling for simulation. There is also,
of course, a number of in built simulation functions available, functions like acquire, release,
wait, etc.

In implementing the Simulation Kernel of SIMMEK we have used much of the ideas from this
class Demos in SIMULA, the full concept of which is described in [3]. Kreutzer’s book [1] also
gives a good description of different styles in simulation programming.

In fact plans existed at the early stages of the project to develop a SIMULA/Demos program
code generator, see also next section. Through a modelling environment the user should specify
the objects and entities of the different types, and a generator should transform this into
SIMULA code. But this solution did not give the necessary flexibility in modelling. Changes in
Demos concerning the reporting functions were also needed, and it is never a good solution to
change program code in an existing system. Another reason was that the SIMULA version on
Macintosh was not available at the time we started implementing the system. It was already
decided at that time that Macintosh, for its unique user-friendly interface, was going to be the
hardware platform for the SIMMEK tool.

But the concept of defining all resources in one "class", with "subclasses" of operators,
machines, stores, etc., is certainly used in SIMMEK (see Section 3.4).

- 3 -

3.2.3 Data driven activity oriented simulation

In 1987-88 we became aware of some research work being performed at the Technical
University of Denmark, Copenhagen. This was done by Kent Fisker as a part of his Ph.D. work.
His work was very generously made available to us, and for some months we had a close co-
operation.

We tried to interface the modelling facilities of SIMMEK to the activity based, data driven
simulator called ASIST [14], developed by Fisker. Again we ran into problems with keeping
the freedom in the modelling phase. After some tests with ASIST as the simulation kernel the
integration work was stopped. The design and implementation work on this interface really
made the distinctions between the world views clear to us. We had full access to the source code
of ASIST and freedom to change it if needed. What stopped the work was the difference
between a process oriented modeler and an activity oriented kernel.

The concept of ASIST as being data driven was no problem. As we understand this concept,
SIMMEK is also data driven. In ASIST a model was made up from a number of activities with
conditions for start and finish. If two different activities concern the same product, this
connection is established in the conditions of the "second" of these activities. This is done by
saying that the "first" activity must be complete before the "second" can start.

For our intended use of SIMMEK as a tool in production management the activity orientation of
ASIST created some not solvable problems. Two important ones were the lacking reporting
facilities in ASIST concerning production orders. In an activity oriented simulation system it is
very difficult to track a production order through the simulation. Another problem was varying
lot sizes through the manufacturing process.

A few more comments concerning the differences between the world views are given in the next
section.

3.2.4 Process, event, and activity oriented simulation

The modelling environment in SIMMEK is object oriented as well as process oriented. The
object orientation is more concerning the computer implementation of the modelling
environment, or perhaps more correct, how the user is operating the computer program.

The Simulation Kernel can also be said to be event oriented though. We find, which may be a
surprise, no contradictions between a process oriented modeler and an event oriented Simulation
Kernel. A process is taken to be "what happens, in sequence, to one occurrence of one type of
product". In a manufacturing context this is the sequence of operations of a part or a product.
One occurrence may be one single item, a batch, or a full order, and is in either case an entity in
the model. A model will consist of a number of processes, one for each type of product or part,
i.e., one for each type of entity object.

- 4 -

Time

Process (series of events for one entity)

E
ve

nt

E
ve

nt

E
ve

nt

E
ve

nt

E
ve

nt

E
ve

nt

Activity Activity Activity

Figure 3.2 Process, activity and event oriented world views

The process oriented model is transformed, with no loss of generality, to the event oriented
Simulation Kernel. The sequences of steps in the processes are transformed to sequences of
events for each process. These sequences of events are nested into an event list. There is always
one event from each process in the event list (see Section 3.5). This can be done since a process
of course is a sequence of manufacturing operations, which again is a sequence of events like
starting an operation, finishing an operation, asking for a resource, etc.

By stating this we also state that the real distinction in "world views" of simulation is between
activity oriented on one hand, and process/event oriented on the other. To go from process
orientation to event orientation is just a simple splitting and combining job. Different processes
or events may refer to the same resources. The simulation kernel in process oriented model must
link the events from one process together. This is easily done in a computer program by use of
pointers. In a truly event oriented simulation this link is not present. The connection between
events (events that concerns the same occurrence of a product), is given as conditions for
performing the event.

In activity oriented modelling and simulation the sequence of the manufacturing operations of
one occurrence of a product is given as conditions for start and finish of an activity. It is difficult
to keep track of which activity belongs to which product, and the sequence between the
activities.

Our conclusion is that the process oriented "world view" is to prefer when modelling and
simulating discrete manufacturing systems. It is models based on this view that in the most
direct way accept information from the Bill of Operations database. And in these models it is
easier to extract results that concerns the products.

3.2.5 Object orientation

There is a true object orientation in the modelling environment of SIMMEK. The objects may be
of two main categories; the products already mentioned, and the resources. The products
routing, in SIMMEK called the process plans, together with the order data, are taken to be the
simulation processes, see 3.2.1. Occurrences of products and parts are born and die during the
simulation run. The resources, however, are permanent. The processes of the products are
sequences of references to which resources they require, and for how long they need to possess
them. The object orientation of the modelling environment is reflected in the internal structure of
the Simulation Kernel, Section 3.5.

- 5 -

3.2.6 Use of an existing simulation language as a kernel in SIMMEK

It was also seriously considered to interface the modelling environment, which was developed
first, to other existing simulation languages like SIMULA/DEMOS, SIMAN or SLAM II. The
linker would then be more or less like a code generator of SIMAN/ SLAM II/SIMULA/DEMOS
code. This idea was left for many of these same reasons that we left the "Demos-kernel" idea
(Section 3.2.2). The cost of developing this code generator would be just as high as developing
the kernel, and developing the kernel ourselves gave us access to source code of the kernel, and
now makes it possible to improve and extend the modelling facilities.

3.3 The modelling features of the SIMMEK system

The SIMMEK system was originally designed to consist of seven main modules; two modelling
modules, a linker, a simulation kernel, a result presentation module, and two modification
modules. In addition to this there is a data store of models and results. In the current version the
two modification modules are not present. Sometime in the future there will also be modules to
perform the integration with other computer systems, see Sections 7 and 9.

Figure 3.3 The main screen picture and the program modules of SIMMEK

It must be pointed out that this is a logical description of the different system modules. For the
user some of these modules seem to be environments with model building functions and blocks.
Others are more straightforward applications that the user explicitly runs. More than one module
may be represented by one application. This is the case for the Linker and the Simulation
Kernel. Figure 3.3 shows how the system is represented on the screen.

The "Modeler" application in the "Programs" archive needs some explanation. It is this
application that controls much of the user interaction in the two modelers.

There are two separate modelling modules. They are called The Layout Modeler and The
Product Flow Modeler. Both of them are operated through the Modeler application. The
difference between them is that they operate on different archives and hence types of objects.
This distinction is also reflected in the models. A simulation model consists of a layout model

- 6 -

and a product flow model, with resource objects in the layout model, and product and part
objects in the product flow model.

Another way of describing the overall structure of the SIMMEK system is to show the hierarchy
of archives that makes up the system and its models, Figure 3.4.

A third way is a figure showing how the different modules are linked, and how they work
together on the models, here called the data store, Figure 3.5.

Product
Archive

Model
Archive

Resource
Archive

Operators

Machines

Transport

Stores

Accessories

SIMMEK

Process
PlanOrder

Rules Results

Models..

Layout Product
Flow..

Economy

Products..

Simulator

Figure 3.4 The hierarchy of archives of SIMMEK

3.3.1 The Layout Modeler

The Layout Modeler is the part of the modelling environment used to create and describe the
resource objects. There are two main types of resources; those that may be consumable and
those that may not. Most of the resource types; machines, transport units, stores and operators,
are non-consumable. That does not mean that they are all-time present during a simulation run.
They may be "down"/not available for some scheduled or unscheduled period. Such down time
for a machine is typically when the machine breaks down, or when it is stopped for
maintenance. For an operator this time is simply when he is not working.

Another type of resource objects is called requisites. Resources of this type may be defined to be
consumable. If they are consumable, they may be refilled or supplied by certain ordering
procedures.

- 7 -

Results

Product Flow
Modeler

Layout
Modeler

Analysis
Module

Simulation
Kernel

Simulator

Object
Linker

Archives

Data Store

Figure 3.5 The linkage of the different modules in SIMMEK

By secondary we mean that an operation can not take place on such a resource alone. An
operation must take place on either a machine/station, a transport unit or in a store. It follows
from this that the operator resources are also secondary resources.

To show the features of the system it is necessary to go into the details of the modelling
environment. In Figure 3.6 Resource type; Machine - page one, the input screens for modelling a
machine resource are shown. In Table 3.2 Resource type; Machine - attributes, all the attributes
available for a resource of type machine are explained.

For the other types of resources; requisites, stores, transport units and operators, the screen
pictures are not shown, but Tables 3.3 to 3.6 explain all the attributes of these resource types.

3.3.1.1 The machine resource type

This section shows in Figure 3.6 a picture of the screen where input concerning a machine
resource is given. This is an example of how the working environment is when the user is in the
input phase. Similar screens are available for all types of resources and products.

- 8 -

Figure 3.6 Resource type; Machine - page one

Table 3.2 lists and explains all the input parameters of the machine resource. The screen is
shown in Figure 3.6.

Name Unit Range Description

Number of
units

integer
> 1

Indicates how many similar machines there
are of this type. These machines can be seen
as a common resource

Availability

Time units

blank field or
decimal
number
> 0

Indicates how many time segments the
resource is available each day. The length of
the day is given in “Rules”. Maximum
availability is obtained when the option is
left blank or when the number given is
bigger than the length of the day

Fixed, not
allocated costs

Currency

blank field or
decimal
number
> 0

Indicates a fixed hourly rate for the
resource. This cost is not distributed at each
product, but is charged to the system as a
whole

Fixed allocated
costs

Currency

blank field or
decimal
number
> 0

Indicates a fixed hourly rate for the
resource. This cost is distributed at each
product that uses the resource. When the
resource is idle, the cost is charged to the
system as a whole

Variable costs

Currency

blank field or
decimal
number
> 0

Indicates an hourly rate on use of the
resource. This cost is distributed at each
product that uses the resource, in a matter of
the time each use the resource

Time to failure

Time units

blank field
or decimal
number
> 0

Indicates the length in time between each
time a failure occurs. This is given as a
statistical distribution

- 9 -

Time to repair

Time units

blank field or
decimal
number
> 0

Indicates the time required to repair the
resource. This is given as a statistical
distribution

Differentiated
set-up times

Time units

blank field or
decimal
number
between
0 and 100

Indicates the most probable times for set-up
of the machine between different types of
products for different families or within a
family. NB! The times given here overrule
any set-up times given in the process plans

Uncertainty

%

blank field or
decimal
number
between
0 and 100

Indicates the distribution around the given
set-up times as a percentage value of the
times. NB! The set-up times are regarded
as a triangle distribution where the times
give the expected value and uncertainty in
% gives the minimum and maximum values

Table 3.2 Resource type; Machine - attributes

For the other types of resources; requisites, stores, transport units and operators, the screen
pictures are not shown, but Tables 3.3 to 3.6 explain all the attributes of these resource types.

3.3.1.2 The operator resource type

The Operator type resource is different from the other resource types in that it can only be used
as a secondary resource.

Name Unit Range Description
Total number of
operators

integer
> 0

Indicates how many operators this resource
consists of

Cost per
operator

Currency blank field
or decimal
number
> 0

Indicates the hourly wage for each operator

The number of
operators per
shift

blank field
or integer
> 1

Indicates how many operators this resource
has per shift. This is given as a row of
numbers. The first number is the number of
operators at shift 1, the second number is the
number of operators at shift 2 and so on

Working shift
arrangement

Time units

blank field
or integer
> 0

Indicates the length of the different shifts in
segments of time. This is given as a row of
numbers. The first number is the duration of
shift number 1, the second number is the
duration of shift number 2 and so on

Table 3.3 Resource type; Operators - attributes

- 10 -

3.3.1.3 The requisites resource type

The parameters for the requisites resource type are slightly different from that of the machine
resource type.

Name Unit Range Description
Number of units # integer > 1 Indicates how many units of the requisite

there is available

Consumption?

Yes or No

Indicates if the requisite can be reused, or if
it is consumed. This decides which of the
following parameters are used

Price per unit Currency blank field or
decimal
number
> 0

Indicates how much each unit costs

Smallest
inventory

blank field or
integer
> 0

Indicates smallest inventory. If the inventory
goes below this level, a new order for the
requisite is executed based on “Ordering
time”. If smallest inventory is given as zero,
then the ordering time is used as a rate of
arrival, independently of the smallest
inventory

Number per
order

blank field or
integer
> 0

Indicates the number of requisites to be
delivered per order

Ordering time

Time units

blank field or
decimal
number
> 0

Indicates the time needed from an order is
given to the ordered requisites arrive. This is
given as a statistical distribution

Fixed, not
allocated costs

Currency

blank field or
decimal
number
> 0

Indicates a fixed hourly rate for the resource.
This cost is not distributed at each product,
but is charged to the system as a whole

Fixed allocated
costs

Currency

blank field of
decimal
number
> 0

Indicates a fixed hourly rate for the resource.
This cost is distributed at each product that
uses the resource. When the resource is idle,
the cost is charged to the system as a whole

Variable costs

Currency

blank field or
decimal
number
> 0

Indicates an hourly rate on use of the
resource. This cost is distributed at each
product that uses the resource, in a matter of
the time each uses the resource

Table 3.4 Resource type; Requisites - attributes

3.3.1.4 The store/buffer resource type

The third type of resource is the store/buffer resource, with the following parameters.

Name Unit Range Description

Capacity

integer
> 1

Indicates the size of the storage facility.
Which means how many orders the storage
facility can contain

- 11 -

Fixed, not
allocated costs

Currency

blank field
or decimal
number
> 0

Indicates a fixed hourly rate for the resource.
This cost is not distributed at each product,
but is charged to the system as a whole

Fixed allocated
costs

Currency

blank field
or decimal
number
> 0

Indicates a fixed hourly rate for the resource.
This cost is distributed at each product that
uses the resource. When the resource is idle,
the cost is charged to the system as a whole

Variable costs

Currency

blank field
or decimal
number
> 0

Indicates an hourly rate on use of the
resource. This cost is distributed at each
product that uses the resource, in a matter of
the time each uses the resource

Availability

Time units

blank field
or decimal
number
> 0

Indicates how many time segments the
resource is available each day. The length of
the day is given in “Rules”. Maximum
availability is obtained when the option is
left blank or when the number given is
bigger than the size of the day

Table 3.5 Resource type; Stores - attributes

3.3.1.5 The transport resource type

Different types of transport units may be modelled by using the common transport type resource
with these parameters.

Name Unit Range Description

Number of units

integer
> 1

Indicates how many units the transport
resource consists of. An assembly line would
for instance have no limit (always have a
unit spare), while an AGV-system would
have a limited number

Availability

Time units

blank field
or decimal
number
> 0

Indicates how many time segments the
resource is available each day. The length of
the day is given in “Rules”. Maximum
availability is obtained when the option is
left blank or when the number given is
bigger than the size of the day

Fixed, not
allocated costs

Currency

blank field
or decimal
number
> 0

Indicates a fixed hourly rate for the resource.
This cost is not distributed at each product,
but is charged to the system as a whole

Fixed allocated
costs

Currency

blank field
or decimal
number
> 0

Indicates a fixed hourly rate for the resource.
This cost is distributed at each product that
uses the resource. When the resource is idle,
the cost is charged to the system as a whole

Variable costs

Currency

blank field
or decimal
number
> 0

Indicates an hourly rate on use of the
resource. This cost is distributed at each
product that uses the resource, in a
percentage of the time each uses the resource

Time to failure

Time units

blank field
or decimal
number
> 0

Indicates the time between each time a
failure occur. This is given as a statistical
distribution

- 12 -

Time to repair

Time units

blank field
or decimal
number
> 0

Indicates the time required to repair the
resource. This is given as a statistical
distribution

Table 3.6 Resource type; Transport units - attributes

This completes the presentation of the different resource types and their parameters.

3.3.2 The Product Flow Modeler

The Product Flow Modeler is used to model the parts and products, also called the entities of the
system. Each type of part or product has its own symbol, which again consists of three main
elements; order data, cost data, and a process plan.

The order data gives the number of work pieces in each order, the start-up times of orders of this
type, the arrival rate of orders of this type, etc.

The process plan is really the key information, because it is used to describe the product’s
routing through the layout. This is a process plan in the manufacturing context, and must be
distinguished from a simulation process. The description of one product’s routing, i.e., its
operations and operation times, together with the order data, is a process in the simulation
context. The process plan contains references to all resources where operations on this product
are going to take place. This includes all transport to be used, and all the buffers and stores the
product is planned to occupy for some period. If operators are modelled as separate resources,
i.e., not permanently attached to machines, they are referred to as secondary resources. This is
also true for other resources like pallets, which may of course be reserved for several operations
without being released between each operation.

The third part, the cost data, is a description of the different cost values connected to the part or
product. The raw material costs may be given as well as purchasing costs. It is also possible to
model the expected sale of the products along with the sales price.

The Product Flow Modeler is also used to specify which rules the model should be operated by.
This includes which priority rules the jobs are to be selected by at the resources. Examples of
selection rules are FIFO or LIFO, shortest or longest expected operation time, shortest time to
scheduled delivery, scheduling by identification of critical resource, etc.

- 13 -

The input is given in three areas;

 * Plant operation rules (3.3.2.1)
 * Product data (order, costs, process plans) (3.3.2.2 - 4)
 * Experiment data (3.3.2.5)

In Tables 3.7 to 3.12, the attributes available for modelling products and their cost data, order
data and process plans are shown. In Table 3.13 the attributes for the entire experiment are
shown.

3.3.2.1 Plant operation rules

For the plant it is necessary to identify the operation rules that are applied in the plant. These
may of course be changed from experiment to experiment, but according to this input format.

Name Numbers Description

Rules of priority for
the system

0 - 16

Indicates the conditions which decide where in
the queue in front of the different resources the
production orders are to be fitted in. This is
stated by a rule-number

Rules of priority for
certain resources

0 - 16

Indicates the conditions which decide where
the production order is to be fitted into the
queue in front of specific resources. This is
stated by a rule-number and name from the
layout

Table 3.7 Plant operation rules - part one

The optional priority rules that may be applied are;

0 highest priority
1 first in
2 last in
3 earliest arrival
4 highest raw material value
5 highest value of the manufactured product
6 highest sales value
7 highest real costs
8 longest expected operation’s time in a resource
9 shortest expected operation’s time in a resource

10 longest remaining operation’s time
11 shortest remaining operation’s time
12 most remaining operations
13 fewest remaining operations
14 least remaining time till delivery
15 least slack before delivery
16 least slack per remaining operation

Table 3.8 Priority rules

As examples two of these rules are explained. Rule 1 says the jobs are
scheduled by the first in first out, FIFO, principle. Rule 6 means that the jobs
are placed in the queue according to their sales value. The most expensive is

- 14 -

placed first, etc. When a job arrives, it may be placed any place in the queue,
but will not affect a job that is already started.

The rest of the operation rules are the following;

Name Unit Range Description

Method for
calculating the
value of the
finished goods

A, B or C

This decides which one of three methods
for calculating the value of finished goods
is to be used. This it used for calculation of
Work in production (WIP)

A: Stated value of finished product
B: Accumulated simulated costs
C: Accumulated costs of raw materials only

Rate of interest

%

blank field or
decimal
number
between 0
and 100

Indicates the interest per year on the capital
tied up in WIP

Depreciation

Currency

blank field or
decimal
number
> 0

Indicates the annual depreciation of the
production equipment

The number of
working days
per year

Days

integer
between 1
and 365

Indicates the number of working days per
year. This is used to calculate the value of
WIP and deprecations

A day converted
into time
segments

Time units

decimal
number
> 0

Indicates the number of time segments
which represents a working day. This value
is used to find the number of days which
the interest is running in order to calculate
the value of WIP and deprecations

An hour
converted into
time segments

Time units

decimal
number
> 0

Indicates the number of time segments
which represents an hour. This value is used
in the calculation of the resource cost
which is to be divided at the different
products

Table 3.9 Plant operation rules - part two

These rules, although named plant operation rules, are mainly concerning how costs should be
calculated in the model, as well as some “calendar” information.

- 15 -

3.3.2.2 Order data

This is one of the three input formats concerning one type of product or part, namely the order
data.

Name Unit Range Description

Family

blank field or
A, B, C, D or
E

Indicates which family this type of product
belongs to. This is used to choose set-up
time in a machine when differentiated set-
up times between families are given in the
machine resource

Priority

integer
between 0 and
99

Indicates the rank in comparison to other
orders. Priority is given as a number, and
highest number gives the highest rank

Time of start

Time units

decimal
number
≥ 0

Indicates the time from the simulation starts
to the first production order of this type
arrives at the workshop. Given in time
segments

Delivery time Time units blank field or
integer
≥ 0

Indicates the time a production order has
disposal of before it has to be finished

The number of
production
orders

integer
≥ 0

Indicates how many production orders of
this type which are to be executed

The number of
products in a
production order

one or more
integers
≥ 1

Indicates how many products of this type the
production order contain. This can be given
as a statistical distribution

The number of
production
orders per
arrival

one ore more
integers
≥ 1

Indicates how many production orders
which arrive at the same time

Time between
arrivals

Time units

blank field or
one or more
decimal
numbers

Indicates how often production orders of this
type arrive at the workshop. This is given as
a statistical distribution

Conditions of
arrival

 blank field or
Q: or I:
followed by
resource name
and by one of
the signs
>/</=
followed by
integer > 0

Show the conditions which have to be
fulfilled before the start of a production
order can take place. The conditions can be
queue size, Q, in front of resources or
inventory, I, of products

Process plan

Time units

one or more
integers
≥ 1 or
statistical
distribution

Can be used instead of rate of arrival. The
plan is given as a row of numbers consisting
of the times of arrival of the different
production orders. The plan is repeated
automatically

Table 3.10 Order data

- 16 -

3.3.2.3 Cost data

The second part concerns cost data for this product or part type.

Name Unit Range Description
Initial cost Currency blank field

or decimal
number
> 0

Indicates the price the firm has to pay for the
raw materials of the products

Other costs Currency blank field
or decimal
number
> 0

Indicates the costs outside the initial cost
which the firm has to invest in order that the
raw materials are available at the point in
production where the simulation starts

Value of
finished
products

Currency blank field
or decimal
number
> 0

Indicates a fixed value which one can use
instead of the calculated value of finished
products. Calculated value of finished
products is the sum of the initial cost, other
costs and the increase in the value of the
products in the production order due to the
machining

Sales value Currency blank field
or decimal
number
> 0

Indicates the value which the firm fix as the
sales value for the product

Cost data per
number of
products

Currency integer
≥ 1

Indicates the number of products which the
given cost data concerns

Time between
sales

Time units

blank field
or one or
more
decimal
numbers
> 0

Indicates the average time between each sale.
Products which are sold reduce the inventory
of finished products. This is given as a
statistical distribution

Sales volume

blank field
or one or
more
decimal
numbers
> 0

Indicates how many products are sold each
time a sale takes place

First sale

Time units

decimal
number
> 0

Indicates when the first sale is to take place.
The later sales will be based on drawings
from the distribution given in “Time between
sales”

Start inventory

integer
≥ 1

Indicates how many finished products there
are in stock when the simulation starts. These
can be sold or used in assemblies. The
inventory influence on the calculation of
costs of inventory of finished products, WIP,
sale and assembly

Table 3.11 Cost data

- 17 -

3.3.2.4 Process plans

A process plan consists of a sequential number of process steps for one product or part type. In
Figure 3.7, the smallest window shows the first page of such a process plan. Each item in the list
at the right hand represents one process step given by a sequential number and the name of a
resource from the layout. Each process step refers to a machine, a store or a transport resource.
The biggest window shows input parameters for one particular process step. Process step
parameters are shown in Table 3.12. The process steps are set-up by commands from a Process
Plan-menu.

Figure 3.7 Process steps of a product type

Table 3.12 lists and explains all the input parameters of a process step. By unit; reference is
meant that the value of the parameters is a reference by name to one of the other objects
(products or resources) in the model.

Name Unit Range Description
Machine Reference

All machine
resources in
model

The identification of the machine this
process step is to take place

General Info Text - Any remarks about this step, the data is not
processed

Set-up time Time units blank field or
decimal
number
> 0

Indicates the time to set-up a machine
before processing can start. This is given as
a statistical distribution

- 18 -

Clamping time Time units blank field or
decimal
number
> 0

Indicates the time to fix a work piece into a
machine before machining can start. The
time is specified for the whole production
order or for every work piece. This can be
given as a statistical distribution

Machining time Time units blank field or
decimal
number
> 0

Indicates the time to machine a work piece
in a machine. The time is specified for the
whole production order or for every work
piece. This can be given as a statistical
distribution

De-clamping
time

Time units blank field or
decimal
number
> 0

Indicates the time to detach the finished
work piece from the machine. The time is
specified for the whole production order or
for every work piece. This can be given as
a statistical distribution

Resource for
Set-up

Reference

blank field or
integer ≥ 1
followed by
the name of
the resource
from the
resource
overview

Indicates the other resources that are
needed to complete the readjustment. This
is given as a number of units followed by
the resource name. Several resources are
tied together with “+”
Example: 1 operator + 2 assembler

Resource for
clamping

Reference blank field or
integer ≥ 1
followed by
the name of
the resource
from the
resource
overview

Indicates the other resources that are
needed to complete the fixing. This is given
as a number of units followed by the
resource name. Several resources are tied
together with “+”
Example: 1 operator + 2 assembler

Resource for
machining

Reference blank field or
integer ≥ 1
followed by
the name of
the resource
from the
resource
overview

Indicates the other resources that are
needed to complete the machining. This is
given as a number of units followed by the
resource name. Several resources are tied
together with “+”
Example: 1 operator + 2 assembler

Resource for
de-clamping

Reference blank field or
integer ≥ 1
followed by
the name of
the resource
from the
resource
overview

Indicates the other resources that are
needed to complete the detaching. This is
given as a number of units followed by the
resource name. Several resources are tied
together with “+”
Example: 1 operator + 2 assembler

Are the times
applied for the
whole
production
order?

Yes or No

Indicates if the times for fixing, machining
and detaching are applied for every work
piece (N) or for the whole production order
(Y)

Line
production?

Yes or No

Indicates the dependence between this
process step and the next process step. If
line production is set yes (Y), the main
resource will not be released before the
next process step resource is free

- 19 -

Sub-assemblies Reference blank field or
integer ≥ 1
followed by
the name of
the product
from the
model

Indicates which parts from finished
production orders shall be assembled
together with the workplaces from the
production order in this process step. The
number of units is applied for assembly of
one work piece from the production order
in force. This is given as a number of units
followed by the name of the product.
Several products are tied together with “+”.
Example: 1 nut + 2 bolt

Resources that
are reserved for
longer periods
of time

Reference blank field or
integer ≥ 1
followed by
the name of
the product
from the
model

Indicates the resources that will be reserved
for use in this and in all the next process
steps until released

Release
reserved
resource

Reference blank field or
integer ≥ 1
followed by
the name of
the product
from the
model

Indicates the resources that will be released
after use in this process step. Is applied for
resources reserved in an earlier process
step. This is given as a number of units
followed by the name of the product.
Several products are tied together with “+”

Percentage of
rejects

% blank field or
decimal
number
between 0
and 100

Indicates the percentage of the number of
the work pieces that statistically has to be
rejected in machining with this machine

Percentage of
re machining

% blank field or
decimal
number
between 0
and 100

Indicates the percentage of the number of
the work pieces that statistically has to be
machined in this machine after inspection

New batch size # blank field or
integer ≥ 1

This is used to split the original production
order in several suborders. Regrouping
indicates the number or work pieces in
every suborder. The rest of the work pieces
will be grouped to the last suborder

Table 3.12 Process plan for a machine step

- 20 -

3.3.2.5 Simulation experiment data

To set-up the actual experiment, a final set of data input must be specified. These data are given
below.

Name Unit Range Description
Simulation time
period

Time units integer
> 0

This is the total time period for the
simulation experiment. Simulation starts at
time t = 0 and ends when the time given as a
simulation time is reached

Warm up time
period

Time units integer
> 0

This time is for “warming up” the model.
When this amount of time units is simulated,
all the registering variables are zeroed. In
result reports only that what has happened
after warm up time will be registered. That
means that the time that will be set as basis
for all registering
= simulation time - warm up time

Number of
replications

integer
≥ 1

Indicates the number of times the simulation
experiment will be repeated. Every
repetition will use different drawings in
calculating machining times, transport times,
etc. Running with several replications on the
same model is done to get as reliable result
as possible. A simulation result should be
the average value of several replications. It
is not enough to regard one running as a
complete result

Table 3.13 The attributes for the entire experiment

These attributes are those which are merely simulation parameters. They concern the reliability
of the results. It is important that they are considered together.

There are in principle two ways of getting reliable results;

 * Replications
 Repeated runs of the same model with the same data, but
different seed for the statistical drawings

 * Long simulation runs
 Giving the model the chance to repeat all processes several times

The warm up time is used to reach a “steady state” before the results are collected.

- 21 -

3.3.3 The data store - The Model Archive

All the models are stored in the Model Archive. This archive may contain a number of other
archives. Each of these archives contains one layout model and one or more product flow
models. A simulation model is made up of the layout model and one of the product flow models.
Figure 3.8 shows an example of the contents in an archive in the Model Archive.

Figure 3.8 The contents of an archive in the Model Archive

3.3.4 The Object Linker

The Object Linker transforms all the information in the layout and one product flow model into
information that can be processed by the Simulation Kernel, see 3.5.4 for more details. The
Object Linker is a part of the "Simulator" Application. This module performs the tests required
to be certain that the simulation can be run without complications. All these tests are
automatically performed, and the user is not bothered with this unless any mistakes are revealed.

3.3.5 The Simulation Kernel

The Simulation Kernel is used to choose and perform the wanted number of replication runs of
the model. The Simulation Kernel is also a part of the "Simulator" Application. This is the part
of the system where the model "lives". After starting this module the user is asked to give the
simulation experiment parameters, like warm up period, simulation time period, and number of
replications. The Kernel may produce a full trace, which may be examined by Edit, and an
aggregated summary report. This report, together with the trace, is used mainly for model
validation.

An important part of the simulation module is the Monitor function. This function is used to
display some important information during the simulation run. It is of special use in model
validation (Section 4).

- 22 -

3.3.6 The result presentation module

The Analysis Module presents the more detailed results produced by the Simulation Kernel. The
"menu of results" is found in Section 5. The amount and the degree of detail of the results are
chosen from the menu. The results are presented in files by a format that is readable by two
software packages; StatWorks and Cricket Graph. These packages can be used to perform
statistical tests on the results, and to present the results in graphics. Cricket Graph and
StatWorks are also used for presentation of the summary reports.

In the latest version of SIMMEK the format of the result files are that of Excel. Excel is the most
used spreadsheet for Macintosh, and is also available on MS-DOS for IBM compatible PCs.
This makes it possible to exchange the results between these two computers.

3.3.7 The two modification modules

The two Modification Modules are still not specified. They are meant to be a decision support
tool giving advice about model changes in order to produce better overall results.

3.4 SIMMEK; How it is operated

In Section 1.3 we established what is considered to be the success factors for using simulation in
manufacturing. Two out of five of them were dealing with the input and modelling facilities of
simulation systems;

 * The resemblance between the modelling facilities and the
 real world system being modelled

 * The time an inexperienced user has to spend from the
 time he starts using the tool and till he has a model running

These two factors are closely related. A modelling tool where the building blocks are close to
what you can see on shop floor is easy to learn to use. But also how the tool is technically
operated is important when considering time needed for training.

The most important points in trying to satisfy the success factors are;

 * Symbols that look like machines and other manufacturing resources

 * Using windows, pull down menus and graphics in modelling

 * Adding to and deleting from models by moving symbols

 * Referring to symbols by pointing and clicking with mouse

 * On-line checking of legal values

 * On-line help from pull down menu and message field

All these are important to the two success factors mentioned, but also to model validation. In
Section 4 on model validation some examples will be given.

3.4.1 Modelling

- 23 -

In any simulation system the modelling environment is the most crucial part. No matter how
sophisticated and easy to use the rest of the system is, if it is too complex or time consuming to
build models, the majority of interested users will never see the sophisticated rest.

Production planners and managers, floor managers and machine operators using this tool, should
be able to recognise on the screen the layout with the machines, transports, operators, and the
products and their Bill of Materials, Bill of Operations. Of course no programming should be
needed. This is made possible by offering a number of symbols to represent the different
manufacturing objects, each with different parameters according to the type of object. SIMMEK
takes advantage of the Finder operating system on the Apple Macintosh with its windowing and
graphical facilities. This means that all copying and duplication functions available on the
Macintosh are available in the SIMMEK system.

Figure 3.9 An example of a model layout

The uniformity of all applications for Macintosh, and the user-friendly interface, make the
modelling very fast. Tests performed with the system have shown that after a few hours,
inexperienced users are able to perform realistic experiments.

The first things to do in a simulation experiment are problem definition and establishing the
objectives of the experiment. The system borders must be drawn and the real objects identified.
These objects are either resources in the layout or products and components. When a resource
element in the real layout is identified, and it is decided that it must be a part of the model, it
must be put into the model layout. This is done very easy by pointing at a symbol of a resource
element in the Layout Modeler, and copying it into the model layout. These symbols contain
parameters which are typical for the chosen type of resource element. Machine objects have one
set of parameters, operators have another, stores a third, etc. An example of a simple layout is
shown in Figure 3.9.

We have put a lot of effort into designing the Layout and Product Flow Modelers in such a way
that the modelling route is not set once and for all. The user is free to choose where to start and
where to finish modelling, and is able to take a break no matter how incomplete the model is.
Some simulators have the disadvantage that once started a modelling job it has to be finished
without any break. This is not the case of SIMMEK.

- 24 -

This freedom in modelling is also important whenever you want to make changes in the model.
New machines or products may be added just by duplication of the symbol of an existing object,
and change the parameters that should be different.

Concerning the modelling route it is advisable though to start with modelling the layout. This is
so because when modelling product flow, a lot of references to the resources in the layout is
needed. If the layout is present, this is done simply by pointing and clicking the resource
symbol. How this is done is shown in Figure 3.10. If not, the full name of the resource must be
written from the keyboard. When identifying the resources to be used in one operation, the
system automatically sets up the parameters for the operation. These parameters are of course
different depending on whether it is a machining, transporting or storing operation.

Figure 3.10 Creating the process route of one product type

- 25 -

3.4.2 Simulation

If the user gives values or attributes that are illegal or inconsistent, messages will be given. The
parameter that is out of range is shaded, and must be corrected. Through the message field
detailed information about the error is given. The entire syntax and logic of a completed model
will be checked by the Linker before the simulation starts. This is automatically performed, and
messages are given on the screen. The message contains information about which object,
parameter and value that is incorrect.

It is possible to get aggregated schemes of the expected results. These schemes show what
objects have been put into the model, the expected load of each resource, etc. This makes it easy
to reveal modelling mistakes or overload of the model, and is extremely important in the
validation aspect. A simple test showed that seven out of ten modelling mistakes were identified
by examining these expected values.

3.4.3 Result presentation

The result reports are presented as files in Cricket Graph format, a format that is also readable
by StatWorks, or in Excel format. This gives the user the possibility to manipulate and combine
results from many experiments. This is done by standard copying and pasting procedures of the
Macintosh. A number of mathematical and transforming functions is also available in Cricket
Graph and StatWorks. In most cases these will cover all needs. It is also possible to compare the
results directly with results from the real system, in order to convince everybody of the model’s
validity. The most important and significant results may be extracted and presented graphically,
both on the screen and as hard copies, just the way the manager is used to see them.

With Excel it is possible to perform a wider range of mathematical operations. As with any other
spreadsheet it is possible to put mathematical formulas into cells, columns and rows. Another
possibility is the use of macros for automatic extraction of data, creating graphs and reports.

A library of company specific macros may be developed. These macros can be used for different
models, and complete reports can be made by pushing one button.

There is a freedom to choose which result reports to be produced during simulation. Some of the
reports will always be accessible after a simulation experiment, others may be generated on
request. Section 5 will deal with the different reports already available in SIMMEK, and these
can be post processed for hard copy presentation.

3.5 The internal structure of SIMMEK

3.5.1 Modelling specifications

During the specification phase, user requirements turned out to be very similar to the Macintosh
concept of the user interface. Early we became quite sure that use of the windowing technique
and the mouse device were the right way to go. Therefore we stated that the system should run
on a Macintosh computer using all its facilities.

We wanted the different resources to be represented as graphical symbols. We specified that
templates of resources should be stored in a palette, from where they could easily be picked up
and placed in a window representing the job shop floor. Behind each symbol, numerical
characteristics should be presented by clicking it up, modified and stored. Similar functions
were specified for the product flow models.

First we started to create a new application to handle all these functions. After a while, we
realised that this was a long way to go, both in time and costs. Then we looked at different
database software for modelling and data storing, but we did not find any suitable for our needs.

- 26 -

In addition, the use of database software would introduce an extra cost element in our simulation
package - a user had to buy the database software as well.

3.5.2 Use of the Macintosh concept

It stroke us that the Finder, the Macintosh operating system, itself could serve very well as a
database. It had all the functions that we were looking for. The advantages of choosing the
Finder as a storage medium were;

 * The Finder met our requirements of a storage medium

 * Every Macintosh has its Finder, this means no extra costs

 * New functions in the Finder could also be used on our model elements

 * Once a user became familiar with the Macintosh, he had also

automatically learned the basic principles in our way to create a
simulation model

 * It would reduce our time and cost expenses

Table 3.14 Reasons for choosing the Finder of Macintosh as media

In traditional computer systems, the normal way to run an application is to specify the name of
the application and the name of the data file to be handled. However, the Macintosh, unlike most
other computers, has a special connection between data files and application programs. A data
file may be connected to a special application by specifying that the data file belongs to this
application. When you click up such a data file, the Finder identifies which application the data
file is connected to, and starts the application program. The application then takes appropriate
actions based on information about the data file which is retrieved from the Finder. This facility
is now copied by most operating systems.

This connection information is stored in a part of the data file called the resource part. The
Macintosh files are divided in two; one resource part and one data part. The resource part of a
file may contain different pre defined data structures and templates, the other part may contain
traditional data for reading and writing by application programs.

Applications, which also are files, may contain in its resource part things like pre defined menus,
alerts, dialogues, etc. The program code itself is also actually stored in the resource part.

In our modelling concept we defined the simulation resources (machines, transports, stores, etc.)
as separate files. In addition we developed an application program to handle the parameter
settings; i.e., the information that should be stored in the different files. All simulation resource
files are connected to the application program in the earlier described Macintosh way. When the
user clicks up one of our simulation resource files, the Finder identifies that the file belongs to
our modelling application and then starts it. The application presents the data stored in the file
on the screen, it handles data modifications and stores any changes made.

The use of pre defined structures and dialogue templates in the resource part of the simulation
resource files, gave us access to all the functions defined in the Macintosh toolbox system [15].
These are among others, functions for text manipulating, pick, put, copy, paste, etc. The data
stored in the simulation resource files is therefore located to the resource part of the file.
Actually, the data part is not in use.

- 27 -

3.5.3 Model limitations

All the information is stored as text strings. When the simulator application accesses information
from the files, it fetches a set of text strings from each file, converts the strings to specified
formats and prepares them for input to the Simulation Kernel.

The Macintosh system software is based on the C programming language. A string defined in
Macintosh C contains in the first byte its size. Therefore a C string is limited to 255 characters
(the maximum size which can be expressed in one byte). Because we use standard toolbox
functions [15], the content of one parameter field may not exceed 255 characters. This is
normally not a problem (who specifies a number or a name greater than 255 characters?). It may
cause problems in some of the parameter fields where a number of resources or product names is
to be specified (i.e., in resource reservations), but we have never got into this problem yet.

As far as we know, there are not any practical limitations in the number of resources which can
be placed in a layout (i.e., grouped in a folder). We have tried more than 256 without any
problems (256 is a suspicious number in such tests), but there is of course limitations connected
to disc space and memory size.

3.5.4 The basic input structure of the Simulation Kernel

Bringing model information from the Finder’s storage medium and prepare it for input to the
Simulation Kernel, is the task of the Linker. The Linker produces two separate linked lists,
which we call the Resource List and the Product Type List (Figure 3.11). Both lists are single
linked lists. The first one contains information about the different resources in the layout. The
other one contains information about the different product types.

Linked lists, by nature, have inherent dynamic characteristics. There are no restrictions on the
number of elements stored in a linked list. The chosen programming language; C, is well suited
for linked list manipulation, and the lists are only limited by the amount of free memory.

Each element in the Resource List corresponds directly to a resource object (file) in the layout of
the model. One list element contains data from a resource object specified by the user, run time
data and a Q-list (queue-list) for holding products which request the resource during execution.

To gain maximum execution speed, a Q-list is a double linked list. This is done because of the
ability to choose different rules for insertion of products in the lists. Sometimes products
requesting a resource, will be placed at the end of the resources Q-list (FIFO), and sometimes
the products will be placed in the start of the list (LIFO). Products can also be placed in other
positions of the list depending on the chosen insertion rule. An example of such a rule is "The
product with lowest machining time will be served first".

In addition to the elements corresponding to the resource objects in the model layout, each
product type will also be represented as elements in the Resource List. That is, when a product is
finished and "dies", it changes from being an entity (an object that moves around and requires
resources) to a resource which may be required by an assembly. During the simulation, other not
finished products (entities) may ask for work pieces as assembly parts from such a product
resource.

Each element in the Product Type List corresponds directly to a product specification in the
Product Flow Model. One list element contains data specified by the user in the Order data, Cost
data and Process Plans. The last mentioned, however, is converted to an operation list. This is a
single linked list where all the process steps in the Process Plan are split up in single operations
in sequence. Every product will follow the execution of the operation list of its product type.

Operations will be; Hold a resource, Release a resource, Delay for a specific time, etc. All
operations which refer to a resource has a pointer connection to the specific resource in the

- 28 -

Resource List (see Figure 3.11). The program can then quickly and easily identify the requested
resources during run time.

The Product
Type List

The
Resource
List

Operation
List

Connection to
requested
resource

Q-list

Product
type

Resource

Figure 3.11 The lists created by the Linker

3.5.5 Special functions

Two special functions will internally be set-up as special entities and become elements in the
Product Type List. These are the handling of the resources Mean Time Between Failure, MTBF,
and the Sales Function of the products. The solution of these functions is transparent for the
user.

To handle MTBF, the Linker produces a special entity which periodically requests the particular
resource and holds it for the specified reparation time. This special entity has top priority and
will be served first when it requests a resource. Each resource with MTBF specified, will
generate such a special entity type. These entities will be represented as product type elements in
the Product Type List.

The sales function acts in a similar way. The special entity for handling sales, requires work
pieces from a finished product which has become a product resource. Its behaviour is very
similar to products which request assembly parts. The sales entity has no special priority like the
MTBF function, and will be served according to chosen priority rules. Each product type with
sales function specified, will create a sales entity stored as a product type element in the Product
Type List.

3.5.6 In the Simulation Kernel

Each occurrence of a product is represented by a product element. This element contains run
time information connected to that specific product. In addition, the element contains a pointer
to the operation list of its product type, pointing to the next operation that will be executed for
this product (Figure 3.12). The element also contains a time variable which shows the point of

- 29 -

time for execution of the next operation, and a pointer mechanism which enables it to be put into
a Q-list of a resource or into the Event List.

The Event List, like the Q-lists of the resources, is a double linked list. During execution of the
Simulation Kernel, the list contains product elements which have, for the moment, got all their
requested resources, and now consume time. The product elements in the list are sorted in
ascending order after their point of time for next operation.

The Product
Type List

Product
Type:A

Operation
List

The
Event
List

Entities (products)

Next
operation

Next
operation

A A

Figure 3.12 The entities’ (products’) connection to their next operation

- 30 -

It is always the first product element in the Event List which drives the Simulation Kernel. The
first element is picked out of the list and becomes the current. The global simulation time is
updated, and the current element’s next operation is executed.

If the operation can be performed immediately, the element is still considered to be the current
element, and the next following operation will then be executed. Otherwise, the element will be
put back into the Event List with a new time schedule, or placed in a Q-list of a resource waiting
for release of that resource (Figure 3.13).

Elements which are put back into the Event List, have executed a time consuming operation.
Elements which are placed in a Q-list of a resource, have requested a resource which was not
available at that moment.

New products are dynamically created during run time based on information stored in the
elements of the Product Type List. These products are immediately put into the Event List.
When a product has stepped through its Process Plan (i.e., the product types operation list), the
product "dies". Summary information of the product type and the product resource is updated.

Allocating memory at run time for product bodies may slow down the execution speed of the
system. Specially if the free memory available has been fragmented. To speed up the system, a
pool (actually a stack) of product bodies are present. When a new product is to be created, a
product body is popped off the stack and connected to that specific product type. When a
product terminates, the product body is released from its type specification and pushed on the
stack.

The stack is of limited size. If the stack is filled up, the body of terminated products is released
as free memory. On the other hand, if the stack is empty, new product bodies must be allocated
from the free memory space.

The
Event
List

Current
entity

(product)

The
Resource
List

Q-list

Resource

Out
of the
Event
List

Back
in the
event
list

Into a
Q-list of a
resource

or

Figure 3.13 The current entity (product);
Back in the Event List or in a Q-list waiting for a resource

- 31 -

3.5.7 Result reports

The most detailed information about a simulation experiment is stored in the Event Log. The log
contains a list of every event which has happened during the data registration period of the
experiment; from the end of the warm up period to finished simulation time. Each event is
recorded in one line and arranged after its point of happening time. The log is stored as
alphanumerically characters and connected to the Edit program, but there is no problems found
in looking at the log with other text processing systems (for instance Microsoft’s Word).

All other result reports are stored in the general format supported by either Excel or the two
programs Cricket Graph and StatWorks made by Cricket Software. In the next version of
SIMMEK only the Excel format of result files will be available. The Excel format is chosen for
many reasons. Excel is;

 * A spreadsheet with macros and graphics

 * The most used spreadsheet on Macintosh

 * Available also on MS-DOS and other hardware platforms

A detailed description of all results produced by SIMMEK is given in Section 5.

3.6 Advantages and disadvantages of SIMMEK

As any other computer tool, SIMMEK has its advantages and disadvantages. On the positive
side the following points are most essential;

 * A tool suitable both for decision support in
 strategic and operational production management

 * Includes economical analysis

 * Models and results are presented by spreadsheets
 and graphics, making it;
 quick to model
 easy to read and interpret
 easy to post process the data
 easy to integrate

 * No programming or pseudo programming needed

Table 3.15 The major advantages of SIMMEK

Most of these points are self explaining, and reference is given to this whole Section 3 to show
how this is implemented in SIMMEK.

The general status of SIMMEK today may be described by that it is extremely fast to learn to
use, and to create the first models in. But is still limited in what can be modelled, and how fast
the models can be changed.

Concerning programming, it is still true that the so-called programming free tools like SIMAN
and Witness, need pseudo programming to be able to model a plant, and thus more time is

- 32 -

required to learn to use. On the other hand, this makes them more flexible in what can be
modelled.

On the negative side, SIMMEK has what could be called lacks of facilities compared to other
existing packages. The most important of them are;

 * No animation

 * No programming facilities

 * Modelling limitations

 * Slow in changing large set of parameters

 * Available only on Macintosh

 * No integration possibilities

Table 3.16 The major disadvantages of SIMMEK

It has been a strategy all the way in the SIMMEK project that animation was not to be included
in SIMMEK. Animation has its potential in “selling simulation or a simulation package”, as well
as for validation of bottlenecks in a layout simulation. As layout simulation has not been
identified as the most important application for SIMMEK, it was decided that there should be no
animation facilities.

The lack of programming facilities is the most severe lack of a tool like SIMMEK. This limits
what can be modelled. At least it limits what can be modelled without a lot of abstraction and
“tricky modelling”. But some phenomena must be simplified and not modelled, and in several
cases this is crucial for the validity of the model.

On the other hand, such programming facilities should be optional, so that the inexperienced
user can create complete, but not so sophisticated models, without using these facilities.

The last three points, slow in changing large set of parameters, available only on Macintosh, and
no integration possibilities, have certainly been solved with the new version of SIMMEK, made
outside the work presented in this report.

Concerning the integration aspects, speaking of the new version of SIMMEK, as well as any
other package, there is still a lot of research work to be done to be able to make a smart
transformation of data.

A final remark on the future development of SIMMEK, concerning the common research areas
identified in Tables 2.3 and 2.4, the most important ones are to improve the integration facilities
for a smart transformation of data, as well as being able to import and model plants and products
from a one-of-a-kind production environment.

3.7 Hardware and software specifications and requirements, SIMMEK-I

The prototype was implemented on a Macintosh computer. SIMMEK can be used on all types of
Macintosh computers. A Macintosh with 4 or more MB, and a 68030 processor is
recommended.

- 33 -

It uses the Finder for modelling purposes and storing of data. The parameters handling
application, the Linker and the Simulation Kernel is implemented in Light speed C with
extensive use of the Macintosh toolbox functions. The simulation results are presented in files of
Cricket Software format or Excel format (see although Section 3.5.7).

3.8 The new versions of SIMMEK, SIMMEK-II

As mentioned earlier, a lot of improvements and modifications has been done with SIMMEK.
This work has been done with some other partners, and the main part at SINTEF-NTH has been
performed by Eirik Borgen. Therefore it is not reported as a part of this Dr.ing. work, but only
the main achievements are referred to.

These achievements can be summarised in the three following points, see Borgen’s [12] new
report.

 * All input can be given in the Excel format

 * Data can be received from an MRP II computer based
 production management system, or any other system
 that can support the Excel format

 * Available on both PC - MS/DOS and Macintosh

Table 3.17 The new SIMMEK-II versions

The effects of these achievements are obvious. SIMMEK-II is now available for “all” who are in
possession of a personal computer. It can be used for operational decisions in production
management. And it is very quick and easy to make changes for a whole set of parameters at
once.

- 34 -

